Games Seminar: Pushdown Parity Games

Games Seminar: Pushdown Parity Games

Mathieu Lehaut

22/02/2022

Games Seminar: Pushdown Parity Games └─Plan

Plan for this talk

• Why Pushdown Games?

Plan for this talk

- Why Pushdown Games?
- What Pushdown Games?

Plan for this talk

- Why Pushdown Games?
- What Pushdown Games?
- How Pushdown Games?

Types of games seen so far

• Several different winning conditions ...

Types of games seen so far

- Several different winning conditions ...
- ... but always *finite* arenas

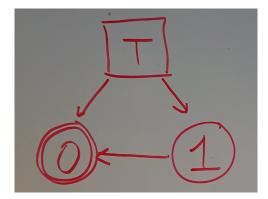
```
Types of games seen so far
```

- Several different winning conditions ...
- ... but always *finite* arenas
 - ► Infinite games?

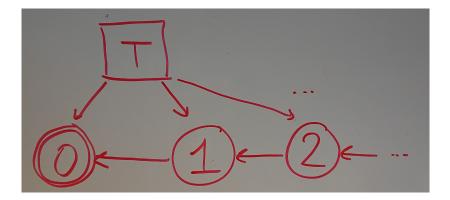
Motivation(s)

Synthesis for systems over $\mathbb N$ or $\mathbb R,\,\ldots$

Differences between finite/infinite games



Differences between finite/infinite games



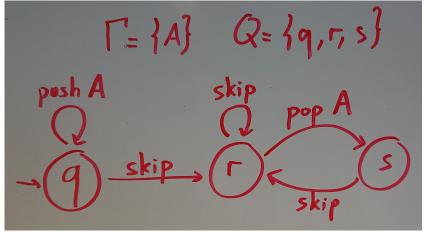
Infinite games as inputs

- Need to give games as inputs for decision problems
- But cannot give them as infinite set of nodes/edges

Infinite games as inputs

- Need to give games as inputs for decision problems
- But cannot give them as infinite set of nodes/edges
 - ▶ Need finite representation!

Pushdown Processes



Pushdown Processes

Pushdown Processes

 $\mathcal{P} = (\Gamma, Q, q_0, \delta : Q \times \Gamma \to Q \times \operatorname{Op})$ with $\operatorname{op} \in \operatorname{Op}$ of the form $\operatorname{push} A$ or $\operatorname{pop} A$ for $A \in \Gamma$.

Pushdown Processes

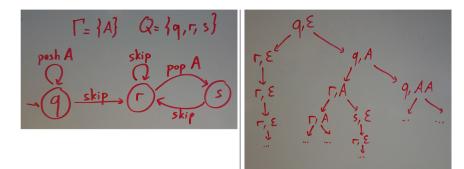
Pushdown Processes

 $\mathcal{P} = (\Gamma, Q, q_0, \delta : Q \times \Gamma \to Q \times \operatorname{Op})$ with $\operatorname{op} \in \operatorname{Op}$ of the form $\operatorname{push} A$ or $\operatorname{pop} A$ for $A \in \Gamma$.

Configurations

Configuration of \mathcal{P} : $(q, \gamma) \in Q \times \Gamma^*$

Configuration tree



Pushdown Parity Games (PPG)

Game over tree of configurations

•
$$Q = Q_0 \uplus Q_1$$
 partition of states

Pushdown Parity Games (PPG)

Game over tree of configurations

- $Q=Q_0 \uplus Q_1$ partition of states
- $\Omega: \mathcal{Q}
 ightarrow \{1,...,n\}$ parity objective

Pushdown Parity Games (PPG)

Game over tree of configurations

- $Q=Q_0 \uplus Q_1$ partition of states
- $\Omega: Q
 ightarrow \{1,...,n\}$ parity objective

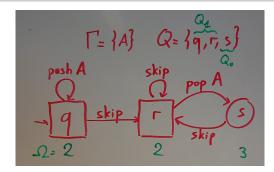
Configuration (q, γ) has same owner and parity as q.

Pushdown Parity Games (PPG)

Game over tree of configurations

- $Q=Q_0 \uplus Q_1$ partition of states
- $\Omega: \mathcal{Q}
 ightarrow \{1,...,n\}$ parity objective

Configuration (q, γ) has same owner and parity as q.



Goal

Reduce configuration $(q, \gamma A)$ into (q, A) + some information

Goal

Reduce configuration $(q, \gamma A)$ into (q, A) + some information

Observations

Assume current configuration is
$$(q, \gamma)$$
 and $q \xrightarrow{\text{push } A} q'$ happens.

Goal

Reduce configuration $(q, \gamma A)$ into (q, A) + some information

Observations

Assume current configuration is (q,γ) and $q \xrightarrow{\text{push } A} q'$ happens.

 $If A never popped \Rightarrow \gamma irrelevant$

Goal

Reduce configuration $(q, \gamma A)$ into (q, A) + some information

Observations

Assume current configuration is (q,γ) and $q \xrightarrow{\text{push } A} q'$ happens.

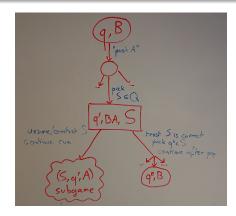
- ② If A popped \Rightarrow only need to know the state after the pop

Main idea illustrated

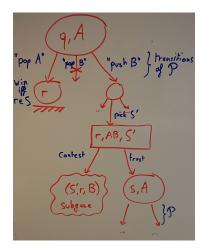
On push , Player 0 guesses the set of possible states S following the corresponding pop

Main idea illustrated

On push , Player 0 guesses the set of possible states S following the corresponding pop

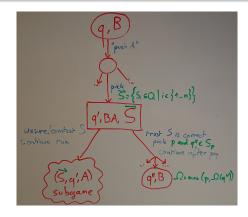


(S, q, A)-subgame



Again, with parity

On push, Player 0 guesses the sets of possible states (S_p) following the corresponding pop when p is the max priority seen inbetween



Subgame with parity

Need to keep track of max priority seen



"Sketch" of correctness

Lemma Player 0 cannot win by guessing \overrightarrow{S} wrong

"Sketch" of correctness

Lemma

Player 0 cannot win by guessing \overrightarrow{S} wrong

Correctness

Player 0 wins in the PPG iff Player 0 wins in the finite game

What about the complexity?

Each $(\overrightarrow{S}, q, A)$ -subgame has size exponential in the size of \mathcal{P} (due to guessing the $\overrightarrow{S'}$)

What about the complexity?

Each $(\overrightarrow{S}, q, A)$ -subgame has size exponential in the size of \mathcal{P} (due to guessing the $\overrightarrow{S'}$)

 \times

There are $(n2^{|Q|}) \cdot |\Gamma|$ distinct subgames

What about the complexity?

Each $(\overrightarrow{S}, q, A)$ -subgame has size exponential in the size of \mathcal{P} (due to guessing the $\overrightarrow{S'}$)

Х

There are $(n2^{|Q|}) \cdot |\Gamma|$ distinct subgames

=

Exponential reduction!

Conclusion and extensions

Main result

A PPG can be reduced to an exponential size (finite) parity game

Conclusion and extensions

Main result

A PPG can be reduced to an exponential size (finite) parity game

Extensions

- Multi Pushdown Games: not 1 but k stacks
- Higher Order Pushdown Games: multi-dimensional stacks

Conclusion and extensions

Main result

A PPG can be reduced to an exponential size (finite) parity game

Extensions

- Multi Pushdown Games: not 1 but k stacks
- Higher Order Pushdown Games: multi-dimensional stacks

Thanks!